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I. INTRODUCTION

In order to study the effects of unusual environments over a period

of time, it is often necessary to analyze repeated measurements taken on

a single subject. In some situations, such an analysis may be carried out

under the assumption that the correlation between any two observations is

the same. However, it is more usual to find that the correlations areI
smaller between more distant observations. While efficient inference pro-

cedures exist for the former situation, the statistical methods used in

the latter case have been found to be generally inadequate.
I

The research presented in this report was undertaken in an attempt to

develop suitable analysis techniques for single-subject experiments where

the performance of the subject is abruptly affected by some environmental

change (e.g., the onset of very low frequency motions which cause motion

sickness). The measurements taken on the subject may be thought of as

realizations of a process occurring over time. The problem considered

here is that of making inferences about the mean of that process. The

ultimate goal is to evaluate the statistical significance of any change

in the mean which can be attributed to the environmental change.

The primary focus of this research effort has been on approximating

the distribution of the standard t statistic, which is the appropriate

test statistic for testing the mean of a set of observations when those

observations are independent (subject to some distributional assumptions).

In the situation considered here, however, autocorrelation is present.

Unfortunately, the distribution of the t statistic depends upon the auto-

correlations, which are difficult to estimate precisely. While some prog-

ress has been made toward understanding the distributional properties of
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the t statistic when autocorrelation is present, it must be concluded

that this approach has not yielded satisfactory results.

-
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II. BACKGROUND

It is well known that when observations are autocorrelated, tests

based on the assumption of independence may be very misleading. Therefore,

Box-Jenkins time series techniques are often employed. These methods incor-

porate the autocorrelation structure in the model. They require that one

first identify the true model of which the observed series is a realization.

Subsequent inferences depend heavily on the accuracy of this identification.

Eilingstad and Westra [1] have pointed out that for short time series (less

than about 50 points), model identification can be Rxtremely difficalt. The
I

main reason for this is that model identification is dependent on the esti-

mates of the autocorrelations. These estimates tend to be very imprecise,

leading to incorrect specification of the model.

In response to the difficulty involved in model identification, Higgins

[2] has studied some robustness properties of the first-order autoregressive

model (AR(l)) Tn particular, he has considered the consequences of assum-

ing that the correct model was an AR(l) when in fact the series was generated

from a very different underlying model. Zinkgraf andWillson[4] have given

similar consideration to the problem of misspecification. These articles
I

both conclude that using an AR(l) leads to acceptable results under a wide

variety of true underlying models. Therefore, this investigation focuses

on making inferences about the mean of an AR(1) process. As has been shown

in Higgins and elsewhere, it is straightforward to generalize the methods

used to test the mean of an AR(l) to appropriate methods for testing an

intervention (change in the mean) effect. Thus, only the former problem

need be discussed here.
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III. STATISTICAL METHODS AND RESULTS

As stated earlier, we focus attention on the AR(l) process. The

model may be specified as follows:

- i= Yt,

Y2 
2Y t P P(t_l - 1) + E£t 't -2, 3, .... n where

i NC0,a 2 (1- ))

Et ~N(Oa2) for t >2 and

ell' E2' "'" En are independent.

Thus, the correlation between any two observations Yi and Y is pli-i.

2 2 2 2
Also, Yt N(j, a ) for all t where a a C /( p 2).

The hypothesis to be tested is H0 :jj =0 vs. HA:11 >0. A number of

possible tests have been suggested for this problem. When p = 0, the ap-

propriate test statistic is T = A4-7/s, which follows Student's t distri-

bution with n-l d.f. When p O, the distribution of this statistic is un-

known. From reference [2], we have that the variance of V is given by

(2 n kV(Y) =((/n) {l+ (2/n) E[(n-k)p } , which may be approximated by

2 1 k=l
V(Y) ( /n)( i+P ). Using this approximation, a reasonable test sta-

1- p
tistic is given by TCI =T/(V(Y))- (L+--.0) T, where p denotes the estimate

used for p. Higgins has studied the performance of this statistic for the

values n =10, 20, 40, 80, p =.5, .8, .9 and a= .10, .05, where n is the sam-

ple size and a is the significance level of the test. Although this procedure

does much better than that assuming independence, the empirical critical

values, as calculated from 400 simulations for each (n,p) combination, are

still not close to the critical values of the respective t distributions.

If Qis known, the transformation Zt =Y t- 
P Y t -I may be used. Then

Z2, Z3, ... Z are independent and identically distributed with mean
n 4-

.. . . . . . ...



(I -P) P. Of course, in practical situations, p is not known. However,

in practice the transformation X =Y - Y may be used and the resulting

{X t treated as an independent sample. Intuitively, if P is a good estimate

[t

of p, this procedure should be close to size a. In the remainder of this

report, the test statistic obtained from this procedure will be denoted

TRl.

Unfortunately, the usual estimates of p may be very biased, especially
n-l n2

for small samples. For P ={[E y iY) i+ -- l i - )1 Kendall and

Stuart [31 give E( )= p -(l+ 3p)/(n-l1). In order to obtain a less biased

[*

estimate of p, ~ [(n -1)0 + l]/(n- 4) may be used. It is possible for

this estimate to fall out of the interval [-1, 1]. In those cases, *=

(or -1) could be used. This correction will increase the bias of e but is

-q- necessary for a sensible procedure. Both M and TRl may be modified by us-

ing 0* instead of . These modified statistics will be referred to as TC2

and TR2, respectively.

Previous studies have shown that as p increases, the distribution of

T shows more marked departures from that of t(n-) (Student's t with n -

d.f.). The differences between the two distributions are also more extreme

for small sample sizes.

Preliminary analyses focused on the extremes of the design used by

Higgins. That is, a 2 3 factorial design was used with n =10, 80, p =.59 .9

and a = .10, .05 . For each (np) pair, 400 simulations were done. The ob-

served critical values were found and compared to t n -), the upper a-point

of a t(n-l) distribution. Also, the empirical probability of rejecting H 0

was found when t l(n -1) was used as the critical value. The procedures us-

ing * performed better than those using s but were still not close to size

a. The results are presented in Tables 1 and 2. As can be seen from the
-5-



Table 1: Critical values for various test statistics based on
400 simulations at each (n,p) combination

T TCI TC2 TRI TR2 t (n-i)

n=l0, p -. 5 .10 2.51 2.07 1.71 2.28 1.55 1.383

.05 3.16 3.10 2.65 3.24 2.40 1.833

n = 10, p = .9 .10 6.82 5.41 3.57 6.01 3.32 1.383

.05 10.74 7.56 6.06 8.38 5.29 1.833

n = 80, p = .5  .10 2.33 1.39 1.35 1.43 1.34 1.282

.05 2.91 1.79 1.73 1.75 1.66 1.645

0

n =80, p= .9 .10 6.40 1.94 1.65 2.00 1.49 1,282

.05 8.37 2.87 2.34 2.95 2.20 1.645

Table 2: Empirical significance levels when t (n-i) is used as the
critical value

T TC1 TC2 TRI TR2

n =10, p =.5 .10 .21 .18 .14 .18 .13

.05 .15 .12 .09 .12 .08

n =10, p = .9 .10 .37 .30 .24 .32 .21

.05 .35 .26 .17 .28 .17

n = 80, p =.5 .10 .25 .11 .11 .13 .11

.05 .20 .07 .06 .06 .05

Sn= 80, 0=.9 .10 .41 .20 .17 .20 .13

.05 .38 .14 .10 .14 .08

e -6-



4

tables, the results are not too encouraging, particularly for n=10 and

P =. 9.

The correction used by Higgins is based on the premise that T= wZ,

where w is some constant depending on n, p and a, and Z follows Student's t

distribution. Therefore, Pr(T >c) = Pr(wZ > c) = Pr(Z> c/w). If c is the ob-

served critical value and Z- t(n -1) then w c/t (n-l1). The values of w

ia
|3

for the 2 3design are given in Table 3.

As can be seen from Table 3, there is a strong effect due to p, as

was expected. The other factors (n and a) seem to have little, if any,

effect. The total variation in Table 3 can be broken up into seven corn-

I

ponents corresponding to the three main effects and their interactions.

This AOV breakdown is presented in Table 4.

The AOV table shows that there is a very strong effect for p but no

other large effects. If the three-way interaction (n x x p) is used as

an error term, none of these other effects approaches statistical signifi-

cance. Therefore, w seems to be a function of p alone. The next step is

to try to find this function. In order to accomplish this, 1000 simulations

of length 30 were done for p =.5, .7,.8,.85, .9 . It was thought that,

while a was not a significant factor in the 2 design, an effect might be

found farther out in the tails of the distribution (a <.05) s Therefore,

the empirical critical values were found for a=.10, .05, .025, and .01.

The results of this investigation are given in Tables 5 and 6. Following

the approach used by Higgins, w =((oe+p)/(l -p)) was used initially. The

empirical critical values of ((l - )/(l +0)) T are presented in Table 7.

Examination of Table 7 reveals the fact the ((l-2 P)dI+ p)) T does

not follow a t distribution. While the empirical critical values are

close to those of Student's t for p =.5, the differences become much

-7-



_ Table 3: Values of w=c/t (n-i) where c is the empirical critical
value

=.05 a = .I0

p =. 5  p = .9 p= . 5  p= .9

n -10 1.72 5.86 1.82 4.93

q n 80 1.77 5.09 1.82 4.99

I

3
Table 4: AOV table for 2 design

Effect df SS

n 1 0.05

1 0.10I

p 1 23.60

n x 1 0.08

n x 1 1 0.07

ax 1 0.17

nxax 1 0.10
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Table 5: Observed critical values based on 1000 simulations
with n=30 for each value of p. Test statistic is
T =-V-Ys.

p

a .5 .7 .8 .85 .9

.10 2.10 3.05 3.90 4.84 6.37

.05 2.82 4.11 5.40 6.75 8.76q

.025 3.41 4.97 6.86 8.31 10.89

.01 4.40 6.38 8.68 10.28 13.34

Table 6: Values of w=c/t (n-l) where c is the observed critical
value

p

a .5 .7 .8 .85 .9

.10 1.60 2.33 2.97 3.69 4.80

.05 1.66 2.42 3.18 3.97 5.]5

.025 1.67 2.43 3.35 4.06 5.33

.01 1.79 2.59 3.53 4.17 5.42

II

Table 7: Observed critical values for ((i- /)/(I +p)) T

.5 .7 .8 .85 .9 t (29)

.10 1.21 1.28 1.30 1.38 1.46 1.311

.05 1.63 1.73 1.80 1.92 .(1 1.699

.025 1.97 2.09 2.29 2.37 2.50 2.045

.01 2.54 2.68 2.89 2.91 3.06 2.462
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greater as p increases. Therefore, a stronger correction for p seems to be

called for. Several other functional forms were investigated. Of the func-

tions considered, T/(a+b/(1- p ) was the most promising candidate. It

should be noted here that for this function to be used for all positive p,

a restriction is needed; namely, b =a+ 1. (This restriction is necessary

for the function to be appropriate when p =0.) However, the function fit

here is intended only to be used for P>.5. When 0 <p<.5, ((l-p)/(l+P)) T

fits well enough for most practical considerations.

The data used to fit the function discussed above consisted of 1000

simulations of length 30 at each value of p. The autocorrelations used

were p= .5, .7, .8, .85, .9 . The fitted function was T/(-1.87+3.08/(1-p 2)).

The observed critical values are given in Table 8. If t (29) had been used

as the critical value with this test statistic, the actual significance

levels would have been as given in Table 9.

The results in Tables 8 and 9 are somewhat encouraging in that

T/(-1.87+ 3.08 /(l-p 2) ) seems to follow Student's t distribution for this

particular set of simulation data. However, as mentioned earlier, the es-

timates usually used for p are biased. Therefore, the test statistic will

not follow a t distribution when the true value of p is not known. In

order to evaluate the effect of bias in the estimate of p, the average values

of and *, which will be denoted by r and r*, respectively, were computed

for each set of 1000 simulations. Test statistics of the same functional
4

form were fit to the data for each of the two estimators of .. While the

form of the function still seems reasonable in the presence of bias, the

magnitude of the coefficients is larger for more biased estimates. The

fitted functions are T/(-9.34 + 9.86/(1 - r 2 ) and T/(-4.33+ 5.08/(1 -r*

respectively. The results of this investigation are presented in Tables 10

-10-
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Table 8: Observed critical values for T/(-1.87 +3.08/(l-p 2) )

P

.5 .7 .8 .85 .9 t (29)

.10 1.25 1.25 1.19 1.22 1.23 1.311

.05 1.67 1.68 1.66 1.70 1.69 1.699

.025 2.02 2.04 2.10 2.09 2.10 2.045

.01 2.61 2.61 2.66 2.59 2.57 2.462

Table 9: Empirical significance levels when t (29) is used as the
critical value

P

.5 .7 .8 .85 .9

.10 .089 .088 .084 .087 .092

.05 .047 .048 .045 .050 .049

.025 .024 .024 .028 .028 .028

.01 .014 .014 .012 .012 .013
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C 2
Table 10: Observed critical values for T/(-9.34+ 9.86/(l-r 2))

P

a .5 .7 .8 .85 .9 t (29)

.10 1.49 1.16 1.09 0.94 1.33 1.311

.05 1.99 1.57 1.52 1.63 1.83 1.699

.025 2.41 1.90 1.92 2.01 2.28 2.045

.01 3.12 2.43 2.44 2.48 2.79 2.462

Table 11: Empirical significance levels when t (29) is used as the
critical value

L .5 .7 .8 .85 .9

.10 .124 .075 .070 .081 .101

.05 .077 .040 .036 .042 .061

.025 .046 .020 .019 .023 .037

.01 .024 .009 .007 .010 .019

Note: The average values of were:

_. .7 .8 .85 .9

.399 .566 .645 .682 .716
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Table 12: Observed critical values for T/(-4.33+5.09/(1-r*
2) )

p

a .5 .7 .8 .85 .9 t (29)

.10 1.42 1.21 1.12 1.18 1.29 1.311

.05 1.89 1.63 1.56 1.64 1.78 1.699

q .025 2.29 1.97 1.97 2.02 2.21 2.045

.01 2.96 2.52 2.50 2.50 2.71 2.462

Table 13: Empirical significance levels when t (29) is used as the
critical value

P

.5 .7 .8 .85 .9

.10 .114 .089 .074 .082 .098

.05 .068 .043 .041 .042 .057

.025 .036 .022 .021 .023 .033

.01 .023 .013 .011 .011 .017

Note: The average values of * were:

P

.5 .7 .8 .85 .9

.484 .670 .758 .798 .835

-13-
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4

through 13.

It is clear from the average values obtained that is extremely bi-

ased. While 0* is also biased, the bias is less drastic and perhaps small

enough that it will not present much difficulty. From the preceding tables

it is clear that the average value of 0* gives much better results than

that of 0 in the situation being considered there.

For the data from which it was derived T/(-1.87+ 3.08/(1-p 2)) per-

forms fairly well. However, it must be checked on independent data in

order to ensure its general applicability. To accomplish this purpose,

it was fit to the earlier 23 design points with p = .5, .9, n =10, 80 and

a= .10, .05 . Table 14 lists the observed critical values as well as the

empirical significance levels when t (n-1) was used as the critical point.

From Table 14, it can be seen that while the test statistic does not

perform as well on the independent data set as it does for the data used

in its derivation, the results are reasonable. Unfortunately, when the

statistics using r and r* were applied to the 23 design, the results were

far from satisfactory, especially for n =10. They are summarized in

Tables 15 and 16.

The results in Tables 15 and 16 show the deleterious effects of bias

in the estimate of the autocorrelation. Also, since this bias is greater

for small samples, the results are now dependent on n as well as on P.

Furthermore, these results only reflect the effects of bias on the test

procedure. The estimates of p are highly variable and this variability

can be expected to present further difficulties for the inference procedure.

In order to obtain some indication of how the test statistics would behave

when the individual estimates were used, those statistics were recalculated

from the original simulation data, using and 0* in the formulas. The

-14-



Table 14: T/(-1.87+3.08/(l- P 2) ) applied to 23 design

(a) Critical values

n = 10 n =80

P

L .5 .9 t (9) .5 .7 t (79)

.10 1.49 1.31 1.383 1.38 1.23 1.282

.05 1.87 2.07 1.833 1.72 1.61 1.645

(b) Significance levels when t (n-l) is used

n = 10 n =80

p p

.5 .9 .5 .9

.10 .115 .098 .113 .090

.05 .060 .060 .052 .045

-15-
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Table 15: T/(-9.34+ 9.86/(1l-r 2) applied to 2 3 design

* (a) Critical values

n-* 10 n- 80

p p

a.5 .9 ( L9) .5 .9 t t(79)

.10 3.66 5.02 1.383 1.32 0.76 1.282

.05 4.59 7.91 1.833 1.64 0.99 1.645

(b) Significance levels when t (n-1) is used

n- =10 n- 80

P

Ct .5 .9- .5 .9

.10 .285 .345 .105 .018

.05 .235 .297 .050 .005

-16-
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Table 16: T/(-4.33+5.09/(l-r* )) applied to 23 design

(a) Critical values

n=10 n =80

P p

CL .5 .9 t (9) .5 .9 t (79)

.10 1.90 1.83 1.383 1.54 1.01 1.282

.05 2.36 2.89 1.833 1.92 1.33 1.645

(b) Significance levels when t (n-1) is used

n = 10 n =80

P p

0_ .5 .9 .5 .9

.10 .152 .172 .139 .055

* .05 .105 .100 .085 .023

1
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results of those calculations are summarized in Tables 17 and 18.

Clearly, when the test statistics using are calculated, their

distribution is far from that of Student's t. Although using 0* yields

better results than using 0, the distribution of the test statistic is

still approximated very poorly by Student's t. The approximation is

particularly bad far out in the tails of the distribution (e.g., ct -. 01)

This is an indication that some correction needs to be made for a. It is

also clear that the correction for p needs to be refined. Unfortunately,

further investigation failed to uncover any promising candidates for w.

I

E

I
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Table 17: T/(-9.34 +9.86/(l- 2) ) calculated from 1000 simulations
for each (n, p) pair

(a) Observed critical values

P

cx .5 .7 .8 .85 .9 t (29)

.10 1.70 1.42 1.35 1.35 1.67 1.311

.05 2.66 2.21 2.16 2.24 2.54 1.699

.025 3.52 2.95 3.05 3.05 3.61 2.045

.01 4.87 5.15 5.27 5.33 6.30 2.462

(b) Significance levels when ta (29) is used

p

a .5 .7 .8 .85 .9

.10 .143 .103 .104 .103 .125

.05 .100 .074 .076 .080 .097

.025 .074 .060 .053 .059 .069

.01 .058 .039 .036 .043 .051
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Table 18: T/(-4.33+ 5.09/(1--, 2) ) calculated from 1000 calculations
for each (n,p) pair

(a) Observed critical values

P

a .5 .7 .8 .85 .9 t (29)

.10 1.53 1.37 1.33 1.31 1.57 1.311

.05 2.12 2.12 2.13 2.28 2.49 1.699

.025 2.78 2.70 2.90 2.98 3.64 2.045

.01 3.89 4.42 4.99 4.90 6.14 2.462

(b) Significance levels when t a(29) is used

P

a .5 .7 .8 .85 .9

.10 .128 .103 .104 .102 .121

.05 .082 .075 .076 .081 .090

* .025 .054 .053 .055 .061 .064

.01 .037 .036 .035 .043 .051

-20-
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IV. DISCUSSION

The focus of this report has been on hypothesis tests about the mean

| of a first-order autoregressive process. This type of process has been

determined to be the most applicable model for the analysis of the effect

of environmental change in single-subject experiments. Two types of test

statistic have been considered. If the sequence of observations is denoted

by Y1 9 Y2, "''. Y n then onc type of test statistic involves estimating the

autocorrelation (p) and then using the transformation Xt =Yt - OYt-i , where

is the estimate of p. The transformed observations are then treated as

an independent sample.

The other type of test statistic is of the form w(^)T, where

T =VniY/s. First, an attempt was made to determine a suitable functional

form for w and then simulation data was used to estimate the coefficients.

Two different estimators of p were considered. The first is the standard

estimator while the second includes a correction intended to reduce the bias

of the estimates.

The results of the previous section are not very encouraging. Test

statistics which depend on transforming the data are seen to be very sensi-

tive to the estimate of the autocorrelation. The modified estimate of 0

improves the performance of the test procedure considerably but is not suf-

ficient for the purpose of obtaining a valid method of analysis. Not only

the bias but also the variability of the estimator affect the test procedure.

While further refinement of the adjustment for bias might be possible, there

is no way to eliminate the variability.

Functions of the form w( )T attempt to compensate for the distributional

properties of the estimator of p. Unfortunately, no suitable function has

-21-



been found and perhaps none exists. It seems clear that w needs to dependU
on n and ct(the sample size and significance level, respectively) as well as

5. That is because the sampling properties of depend on n and cX. At the

present time, there is no clear indication as to how to proceed in finding

an appropriate function w(n,p,t) so that the test statistic T/wwould have

an approximate t distribution. Furthermore, the existence of an adequate

approximation of this type is by no means guaranteed.

Since the results presented in this report indicate that the techniques

so far considered will probably not prove adequate, it is felt that a radi-

cally different approach is needed. In addition, it seems clear that such
I

an approach will need to combine information from more than one experimental

subject. Although the indiscriminate pooling of data from several individ-

uals is not feasible in this situation, a more sophisticated approach might

make such pooling possible.

Different individuals show different patterns of response to environ-

mental change. However, it seems reasonable to assume that these individuals

may be grouped into certain classes such that the individuals within each

class have similar response profiles. For example, the responses from two

individuals might well be easily modeled by first-order autoregressive pro-

cesses with comparable autocorrelations. Even if only a few individuals

may be treated as a group, the problem of testing hypotheses about the mean

of the process becomes much more tractable.

At the present time, further investigation is needed in order to iden-

tify which variables best describe the response profiles of experimental

subjects in environmental time-course studies. Once these variables are

identified, statistical techniques such as cluster analysis may be used to

separate the subjects into relatively homogeneous groups. Finally, sta-

-22-
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tistical analysis techniques could be developed to make inferences about

"C each group.

I
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